

Table of Contents

	Django-db-mutex Documentation
	Overview

	Installation

	Examples
	How to Use Django DB Mutex

	Lock Timeout

	Usage with Celery

	Code Documentation
	db_mutex

	DBMutex Model

	Exceptions

	Contributing
	Running the tests

	Code Quality

	Code Styling

	Building the docs

	Release Checklist

	Vulnerability Reporting

	Release Notes
	v1.1.0

	v1.0.0

	v0.5.0

	v0.4.0

	v0.3.1

	v0.3.0

	v0.2.0

	v0.1.8

	v0.1.7

	v0.1.6

	v0.1.4

Django-db-mutex Documentation

Django-db-mutex provides the ability to acquire a mutex lock from the database
in Django.

Overview

For critical pieces of code that cannot overlap with one another, it is often
necessary to acquire a mutex lock of some sort. Many solutions use a memcache
lock strategy, however, this strategy can be brittle in the case of memcache
going down or when an unconsistent hashing function is used in a distributed
memcache setup.

If your application does not need a high performance mutex lock, Django DB
Mutex does the trick. The common use case for Django DB Mutex is to provide the
abilty to lock long-running periodic tasks that should not overlap with one
another. Celery is the common backend for Django when scheduling periodic
tasks.

Installation

	Install Django-db-mutex with your favorite Python package manager:

Using pip
pip install django-db-mutex

Or, using pip (from source, in editable form)
pip install -e git://github.com/ambitioninc/django-db-mutex.git#egg=django-db-mutex

	Add 'db_mutex' to your INSTALLED_APPS setting:

INSTALLED_APPS = (
 # other apps
 'db_mutex',
)

Examples

How to Use Django DB Mutex

The Django DB Mutex app provides a context manager and function decorator for
locking a critical section of code. The context manager is used in the
following way:

from db_mutex import DBMutexError, DBMutexTimeoutError
from db_mutex.db_mutex import db_mutex

Lock a critical section of code
try:
 with db_mutex('lock_id'):
 # Run critical code here
 pass
except DBMutexError:
 print('Could not obtain lock')
except DBMutexTimeoutError:
 print('Task completed but the lock timed out')

You’ll notice that two errors were caught from this context manager. The first
one, DBMutexError, is thrown if the lock cannot be acquired. The second one,
DBMutexTimeoutError, is thrown if the critical code completes but the lock
timed out. More about lock timeout in the next section.

The db_mutex decorator can also be used in a similar manner for locking a function:

from db_mutex import DBMutexError, DBMutexTimeoutError
from db_mutex.db_mutex import db_mutex

@db_mutex('lock_id')
def critical_function():
 pass

try:
 critical_function()
except DBMutexError:
 print('Could not obtain lock')
except DBMutexTimeoutError:
 print('Task completed but the lock timed out')

Lock Timeout

Django DB Mutex comes with lock timeout baked in. This ensures that a lock
cannot be held forever. This is especially important when working with segments
of code that may run out of memory or produce errors that do not raise
exceptions.

In the default setup of this app, a lock is only valid for 30 minutes. As shown
earlier in the example code, if the lock times out during the execution of a
critical piece of code, a DBMutexTimeoutError will be thrown. This error
basically says that a critical section of your code could have overlapped (but
it doesn’t necessarily say if a section of code overlapped or didn’t).

In order to change the duration of a lock, set the DB_MUTEX_TTL_SECONDS
variable in your settings.py file to a number of seconds. If you want your
locks to never expire (beware!), set the setting to None.

Usage with Celery

Django DB Mutex can be used with celery’s tasks in the following manner:

from db_mutex import DBMutexError, DBMutexTimeoutError
from db_mutex.db_mutex import db_mutex
from abc import ABCMeta
from celery import Task

class NonOverlappingTask(Task):
 __metaclass__ = ABCMeta

 def run_worker(self, *args, **kwargs):
 """
 Run worker code here.
 """
 raise NotImplementedError()

 def run(self, *args, **kwargs):
 try:
 with db_mutex(self.__class__.__name__):
 self.run_worker(*args, **kwargs):
 except DBMutexError:
 # Ignore this task since the same one is already running
 pass
 except DBMutexTimeoutError:
 # A task ran for a long time and another one may have overlapped with it. Report the error
 pass

Code Documentation

db_mutex

DBMutex Model

Exceptions

	
class db_mutex.exceptions.DBMutexError

	Thrown when a lock cannot be acquired.

	
class db_mutex.exceptions.DBMutexTimeoutError

	Thrown when a lock times out before it is released.

Contributing

Contributions and issues are most welcome! All issues and pull requests are
handled through github on the ambitioninc repository [https://github.com/ambitioninc/django-db-mutex/issues]. Also, please check for
any existing issues before filing a new one. If you have a great idea but it
involves big changes, please file a ticket before making a pull request! We
want to make sure you don’t spend your time coding something that might not fit
the scope of the project.

Running the tests

To get the source source code and run the unit tests, run:

$ git clone git://github.com/ambitioninc/django-db-mutex.git
$ cd django-db-mutex
$ virtualenv env
$. env/bin/activate
$ python setup.py install
$ coverage run setup.py test
$ coverage report --fail-under=100

While 100% code coverage does not make a library bug-free, it significantly
reduces the number of easily caught bugs! Please make sure coverage is at 100%
before submitting a pull request!

Code Quality

For code quality, please run flake8:

$ pip install flake8
$ flake8 .

Code Styling

Please arrange imports with the following style

Standard library imports
import os

Third party package imports
from mock import patch
from django.conf import settings

Local package imports
from db_mutex.version import __version__

Please follow Google’s python style [http://google-styleguide.googlecode.com/svn/trunk/pyguide.html] guide wherever possible.

Building the docs

When in the project directory:

$ pip install -r requirements/docs.txt
$ pip uninstall -y django-db-mutex && python setup.py install
$ cd docs && make html
$ open docs/_build/html/index.html

Release Checklist

Before a new release, please go through the following checklist:

	Bump version in db_mutex/version.py

	Git tag the version

	Add a release note in docs/release_notes.rst

	Upload to pypi

Vulnerability Reporting

For any security issues, please do NOT file an issue or pull request on github!
Please contact security@ambition.com with the GPG key provided on Ambition’s
website [http://ambition.com/security/].

Release Notes

v1.1.0

	Add tox to support more versions

v1.0.0

	Drop Django 1.9 support

	Drop Django 1.10 support

	Add Django 2.0 support

	Drop python 2.7 support

	Drop python 3.4 support

v0.5.0

	Add python 3.6 support

	Drop Django 1.8 support

	Add Django 1.10 support

	Add Django 1.11 support

v0.4.0

	Add python 3.5 support

	Drop Django 1.7 support

v0.3.1

	Fixed docs

v0.3.0

	Added django 1.9 support

v0.2.0

	Dropped Django 1.6, added 1.8 support

v0.1.8

	Fixed migrations to include south_migrations

v0.1.7

	Fixed upload to pypi

v0.1.6

	Updated for Django 1.7 compatibility

v0.1.4

	This release of django-db-mutex includes docs buildout

	python 3.3, 3.4 compatibility

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 db_mutex	

 	
 	
 db_mutex.exceptions	

Index

 D

D

 	
 	db_mutex.exceptions (module)

 	
 	DBMutexError (class in db_mutex.exceptions)

 	DBMutexTimeoutError (class in db_mutex.exceptions)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Table of Contents

 		
 Django-db-mutex Documentation

 		
 Overview

 		
 Installation

 		
 Examples

 		
 How to Use Django DB Mutex

 		
 Lock Timeout

 		
 Usage with Celery

 		
 Code Documentation

 		
 db_mutex

 		
 DBMutex Model

 		
 Exceptions

 		
 Contributing

 		
 Running the tests

 		
 Code Quality

 		
 Code Styling

 		
 Building the docs

 		
 Release Checklist

 		
 Vulnerability Reporting

 		
 Release Notes

 		
 v1.1.0

 		
 v1.0.0

 		
 v0.5.0

 		
 v0.4.0

 		
 v0.3.1

 		
 v0.3.0

 		
 v0.2.0

 		
 v0.1.8

 		
 v0.1.7

 		
 v0.1.6

 		
 v0.1.4

_static/up-pressed.png

_static/up.png

